DATA QUALITY ASSURANCE REVIEW | SITE NAME MILES RE | DAD LAND | DFILL | | |------------------------|-----------|-------------|-----------| | SITE CODE TXD 9806 | 97072 | | | | PAN \$6635338 | | | | | CASE NUMBER 20258 | | | | | LABORATORY SILVER AN | ALTICAL Z | ING - Kello | 19, IDAHO | | SAMPLE NUMBERS MFAP 47 | MFAP ST | | | | MEAP 48 | MFAP 58 | | | | MFAP 49 | | | | | MFAP 50 | | | | | MFAP 51 | | | | | MFAP 52 | | | | | MFAP 53 | | | | | MFAP 54 | | | | | MFAP 55 | | | | | MFAP 56 | | | | REVIEWER # INORGANIC CLP DATA REVIEW | TRAFFIC NUMBER | MATRIX | ISOLID | DATE
RECD. | Hg
HT | CN | M
HT | MS | DUP | PREP | COMMENTS | |----------------|--------|--------|---------------|----------|----|---------|-----|-----|--------|----------| | MFAP 47 | 5 | 77.9 | 6/22/93 | Y | Y | Y | 2 | .3 | 1,2,1 | | | MFAP 48 | 5 | 73.Y | 4/22/93 | Y | Y | Y | 1,2 | 3 | 2.3, | | | MFAP 49 | 5 | 76-6 | 6/22/93 | Y | Y | Y | 2 | 3 | 1,2, | | | MFAP 50 | 5 | 78.6 | 42/43 | Y | Y | Y | 2 | 3 | 4,5 | | | MFAP 51 | 5 | 74.8 | 6/22/13 | Y | Y | Y | 1,2 | 3 | 1,2, | | | MFAP 52 | 5 | | 9/22/23 | Y | Y | Y | 2 | 3 | 1,2,3, | | | MFAP 53 | 5 | 70.3 | 6/20/0 | Y | Y | Y | 1,2 | 3 | 3.4, | | | MFAP 54 | 5 | 79.1 | 1/22/93 | Y | Y | Y | 2 | 3 | 1,2, | | | MFAP 55 | 5 | 757 | 1100 | Y | Y | Y | 2 | 3 | 1,2, | | | MFAP A | 5 | 83.0 | 6/22/3 | Y | Y | Y | 2 | 3 | 4,5 | | | MFAP 51 | 5 | 77.5 | 6/22/33 | Y | Y | Y | S | 3 | 4,5 | | | MFAP 58 | 5 | 74.4 | 110 | | Y | Y | 2 | 3 | 4,5 | | | MFAP 48D | 5 | 73.4 | 6/24/73 | Y | Y | Y | 3 | 3 | 3,4, | • | W 1V | ٧ | | IBRATI | ON CHECKLIST | ıx | |----------------------------|---------------------|-----|-----|------------|------------------|-----------------------| | DATE
TIME
INSTRUMENT | ICV ICV
REC BLAN | CCV | CCV | ELEMENT(S) | SAMPLES ANALYZED | COMMENTS
AND FLAGS | | | | | - | 5 | Trecord the | | | | | | | | record the | | | | | | | | - | | | | | - | | | Nove | - | | | | - | | | | - | | | | | * | 1 | и | 188 | IV | V | |---|------------------------------------|-------------------------|--|---| | * | SAMPLE #
MATRIX
SPIKE/DUP | ELEMENTS OUTSIDE LIMITS | SAMPLES AFFECTED | COMMENTS AND FLAGS | | 1 | MFAP485
MATRIX
Spile
Soil | 56
Cd | MFAP 48, -51, -53 | all sample data
was already
undetected (U)
PDR 15%. Samples
already listed as 8 | | 2 | h h | Cr | MFAP-48, -51, -53, -48D, -47, -49, -50, -52 MFAP 47, -48, -49, -51, -52, -53, -55, -40 D, -50, -54, -56, -57, -58 | BRL752. Somples
listed as (J).
PORL75%. Samples
listed as (J) | | | Alfali usa
Tanan | Zn. | MFAP-47,-48,-47,-50,-51,
-52,-53,-54,-55,-56,
-57,-58,-48D | 7. RL 75%, Samples
Justed es (J). | | 3 | MFAP48D
Duplicate
Soil | Zm | MFAP 47, -48, -49, -50,
-51, -52, -53, -54, -55,
-56, -57, -58, -48D | RPD > 35% and analyte concentration > 5 x CROL (J) | | | | | | | | | | | | | | ī | n | 1 10 | IV | l v | |----|--------|--|--|-------------------------------| | | MATRIX | ELEMENTS
DETECTED
AND
CONCENTRATION | SAMPLES AFFECTED | COMMENTS AND FLAGS | | CB | SOIL | 12 mg/e | None | None | | 1 | | 36 41 45/e | None | None | | | | As 1.0 49/e | MFAP 47, -49, -51, | Sample & 5 times
Blank (B) | | 2 | | | | | | | | Cd 4.049/e | MFAP 48, -51 | Somple 45 times
Blank (B) | | | | Cr5.ough | MFAP 47, -49, -50, -58
-52, -54, -55, -56, -51 | Sample L5 Hmes | | 3 | | | | Blonk (B) | | | | C4 3.049/0 | MFAP-50, - 54, -56, | Sample 25 times
Blank (B) | | | | Ni 11.045/ | -58,48255,-56-57
MFAP-47,-48,-49,-50,
-51,-52,-53,-54, | Sample 25 times
Blank (B) | | 4 | | | | | | | | Hg 0.249/ | MFAP-53, | Sample 45 times
Blank (B) | | | | CNIONALE | MFAP-47,-48,-49,-50,
-51,-52,-53,-54,-55,
-50,-57,-58,-40A | Samples L5 HMqs
Blank (B) | | 5 | | VII. 7 ug/e
Highest
Value | MFAP-47,-48,-49,-50,
-51,-52,-53,-54,-55,
-56,-57,-58,-40D | Samples L= times
Blank (B) | | | | Na 21.049/ | MFAP-54 | Sample 25 times
Blank (5) | | | | ZN4049/4 | | | | | | Pb
1-8 usle
Hishost | none. | | ## FURNACE AA CHECKLIST | | | 00 | 1112 | 1 .1-1 | | | - | | 400.00 | | |--|---|------------------------|----------------------------------|---|--|---------------------------------|-------------------------|---|---------------------------------------|--------------| | | SAMPLE # | 48 | 46D | 1 47 | 49 | 150 | 5/ | 52 | 53 | 54 | | | DIL. FACTOR | | | | | - | 1 | | 1 | 1 | | | ME TIME LINEA | Contract to the second | 7.7 | 46.11 | | | 53.64 | 51.65 | 54.87 | 47.0 | | | IF ANALYTICAL IF ANALYTICAL | | | | | | | | | | | 5 | DILUTED &
REANLAYZED
(Y/N) | | | | | | | | | | | 6 | RE DIL. FACTOR | | | | | | | | | | | | IF 5 IS N, USI | GUIDE | Participated Physical Co. (1975) | N 9 AND | ENTER | DATA EV | ALUATIO | N IN 27 | (END) | | | 8 | REANALYSIS
SPIKE REC | | | - | | | | | | | | | IF THE REANALY IF THE REANALY THE HIGHEST RI RECOVERY 10-40 | SIS ANA | AS FOL | L SPIKE | RECOVE
D ENTER | RY IS < | 40%, E | VALUATE
N IN 27 | SAMPLE | USI | | 10 | ANAL SPK REC
85-115% (Y/N) | N | N | N | N | N | N | N | N | N | | 11 | SAMPLE ABS
> 50% SPIKE
ABS (Y/N) | y | N | N | N | 4 | N | N | N | N | | 13 | IF 10 IS Y ANI
IF 10 IS N, SI | CIP TO | 19, MSA | IS REQ | UIRED I | | Y
1 IS N | BUT MAY | BE DON | B | | | < 20% (Y/N) | 4 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | | | IF 13 IS Y ENT
REANALYZED
(Y/N) | TER A II | 27 (E | ND); IF | 13 15 | N CONTI | NUE VIT | H 15 | | | | _ | | | | | | | | | | | | 16 | IF 15 IS N ENT | TER J IN | 1 27 (E | ND): IF | 15 IS | Y CONTI | NUE VIT | H 17 | | | | | IF 15 IS N ENT
REANALYSIS CV
RSD <20%
(Y/N) | TER J II | 1 27 (E | ND); IF | 15 IS | Y CONTI | NUE VIT | H 17 | | | | 17 | REANALYSIS CV | | | | | | | | | | | 17 | REANALYSIS CV
RSD <20%
(Y/N) | | | | | | | | | I | | 17
18
19 | REANALYSIS CV
RSD <20%
(Y/N)
IF 17 IS Y EN | TER A IN | 1 27 (E | ND); IF | 17 IS | N ENTER | | 7 (END) | IY | IY | | 17
18
19
20 | REANALYSIS CV
RSD <20%
(Y/N)
IF 17 IS Y EN
MSA (Y/N) | TER A IN | 1 27 (E | ND); IF | 17 IS | N ENTER | J IN 2 | 7 (END) | I Y | IY
IY | | 17
18
19
20
21 | REANALYSIS CV
RSD <20%
(Y/N)
IF 17 IS Y ENT
MSA (Y/N)
IF 19 IS N, EN
CC > 0.995
(Y/N) | TER A IN | 1 27 (E
N 27 (| ND); IF | 17 IS
 Y
 IF 19 I | N ENTER | J IN 2 | 7 (END)
 Y
 ITH 21 | Y
Y | Y | | 17
18
19
20
21
22 | REANALYSIS CV
RSD <20%
(Y/N)
IF 17 IS Y ENT
MSA (Y/N)
IF 19 IS N, EN
CC > 0.995 | TER A IN | 1 27 (E
N 27 (| ND); IF | 17 IS
 Y
 IF 19 I | N ENTER | J IN 2 | 7 (END)
 Y
 ITH 21 | I Y | Y | | 17
18
19
20
21
22
23 | REANALYSIS CV
RSD <20%
(Y/N)
IF 17 IS Y ENT
MSA (Y/N)
IF 19 IS N, EN
CC > 0.995
(Y/N)
IF 21 IS Y ENT
RE MSA (Y/N) | TER A IN | 1 27 (E
N 27 (| ND); IF
 Y
 Y
 Y
 Y
 ND): I | 17 IS
 Y
 IF 19 I
 Y
 F 21 IS | N ENTER Y S Y CON N CONT | J IN 2 Y TINUE W | 7 (END)
 Y
 ITH 21
 Y
 TH 23 | Y Y Y T T T T T T T | Y | | 17
18
19
20
21
22
23
24 | REANALYSIS CV
RSD <20%
(Y/N)
IF 17 IS Y ENT
MSA (Y/N)
IF 19 IS N, EN
CC > 0.995
(Y/N) '
IF 21 IS Y ENT
RE MSA (Y/N)
IF 23 IS N ENT
RE HSA CC | TER A IN | 1 27 (E
N 27 (| ND); IF
 Y
 Y
 Y
 Y
 ND): I | 17 IS
 Y
 IF 19 I
 Y
 F 21 IS | N ENTER Y S Y CON N CONT | J IN 2 Y TINUE W | 7 (END)
 Y
 ITH 21
 Y
 TH 23 | I Y |
 Y
 Y | | 17
18
19
20
21
22
23
24
25 | REANALYSIS CV
RSD <20%
(Y/N)
IF 17 IS Y ENT
MSA (Y/N)
IF 19 IS N, EN
CC > 0.995
(Y/N)
IF 21 IS Y ENT
RE MSA (Y/N)
IF 23 IS N ENT | TER A IN | N 27 (E
N 27 (E
1 27 (E | ND); IF
 Y
 END):
 Y
 ND): I | 17 IS
 Y
 IF 19 I
 Y
 F 21 IS
 F 23 IS | N ENTER Y S Y CON N CONT Y CONT | J IN 2 TINUE W INUE WI' | 7 (END)
 Y
 ITH 21
 Y
 TH 23
 TH 25 | I Y | I Y | ## FURNACE AA CHECKLIST - 1. DUPLICATE INJECTION RESULTS: - A. Did any sample with a reported concentration greater than the CRDL have a duplicate injection XRSD or CV greater than + 20%? ______ (Y or N) - B. If 1A was Y, were the samples re-analyzed? _____ (Y or N) - C. If 1B was Y, was the re-analysis XRSD or CV greater than ± 20%? IF CRITERIA WERE OUT OF LIMITS FOR REPORTED DATA, EVALUATE THE DATA BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, XRSD OR CV AND FLAGS. - 2. ANALYTICAL SPIKE RESULTS: - Al. Did any sample have analytical spike (post digestion) recoveries less than 40% 40%? (Y or N) - A2. If Y, were the samples diluted and reanalyzed? _____ (Y or N) - A3. If Y, were the re-analysis analytical spike recoveries less than 40%? (Y or N) IF CRITERIA WERE OUT OF LIMITS FOR REPORTED DATA, EVALUATE THE DATA BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, PERCENT RECOVERY AND FLAGS. - 2. ANALYTICAL SPIKE RESULTS CONTINUED: - B. Were there any samples with an analytical spike recovery of less than 85% or greater than 115% with the sample absorbance less than 50% of the spike absorbance? (Y or N) IF B WAS ANSWERED Y FOR ANY REPORTED DATA, EVALUATE THE DATA BELOV. INCLUDE ELEMENT, SAMPLE NUMBER, SPIKE RECOVERY AND FLAGS. MSA was conducted for these samples - C1. Were there any samples with analytical spike recovery less than 85% or greater than 115% whose sample absorbance was greater than 50% of the spike absorbance? _____ (Y or N) - C2. If Y, was the Method of Standard Addition used for quantification? IF C2 WAS ANSWERED N, EVALUATE THE DATA BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, SPIKE RECOVERY AND FLAGS. - 3. METHOD OF STANDARD ADDITION: - A. Was the Method of Standard Addition used for the quantification of any sample? $\underline{\qquad}$ (Y of N) - B. If Y, were all of the correlation coefficients greater than 0.995? (Y or N) IF B WAS ANSWERED N, LIST THE DEFICIENCIES AND EVALUATE BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, CORRELATION COEFFICIENT AND FLAG. #### QC REQUIREMENTS At least one preparation blank must be prepared and analyzed for every 20 samples or each batch digested of a given matrix, whichever is more frequent. At least one matrix spike analysis must be conducted for every 20 samples of a given matrix or for each case, whichever is greater. At least one duplicate analysis must be conducted for every 20 samples for a given matrix or for each case, whichever is greater. A CRDL standard for ICP or AA must be analyzed in each analytical sequence (Form 2B). Instrument Detection Limits must be determined quaterly (Form 10). ICP Interelement Correction Factors must be determined annually (Form 11). ICP Linear Ranges must be determined quarterly (Form 12). Summery Table. | 71. | ETAL _ | Pb | _ | IDL / | ,049 | 1-6 | 1 | PAGE / | _ OF _ | | | |--|---|--|--|---|--|--|--|--|--|----------|---------------------------------------| | | SAMPLE | | 50 | 5/ | 52 | 53 | 54 | 55 | 56 | 57 | 58 | | | DIL. 3 | | 4 | 3 | | 8 | 1 4 | 2 | 1 4 | 1 | 1 | | | SPIKE | REC | 129.88 | 131.5 | 1 | | | | 129.32 | 125.89 | 131.47 | | 4 | | | | | | 40%, SK
40%, CO | | | | | | | 5 | DILUTE
REANLA
(Y/N) | D& | | | | | | | | | | | | | FACTOR | | | | | | | | | | | 7 | | S N, US | | | N 9 AND | ENTER | DATA EV | ALUATIO | N IN 27 | (END) | | | 8 | REANAL | YSIS | | | | | | | | | | | | THE HI | GHEST R | YSIS AN
ECOVERY | ALYTICA
AS FOL | L SPIKE | RECOVE
RECOVE
D ENTER
COVERY < | RY IS < | 40%, E | VALUATE
N IN 27 | | | | | | % (Y/N) | N | N | / | N | N | N | N | N | N | | 11 | > 50% | | Y | Y | 1 | Y | Y | Y | Y | Y | Y | | 12 | | IS Y AN | | | | 27 (EN | D) | 1 | 1 | <u>'</u> | | | | IF 10
IF 10
IF 10 | IS Y ANI
IS Y ANI
IS N, SI | D 11 IS | Y, CON
19, MSA | TINUE W | | F 11 IS | | BUT MAY | BE DON | В | | 13 | IF 10
IF 10
IF 10
CV OR
< 20% | IS Y ANI
IS Y ANI
IS N, SI
RSD
(Y/N) | D 11 IS
KIP TO | Y, CON
19, MSA
MSA | IS REC | UIRED I | F 11 IS
ED IF 1 | 1 IS N | | BE DON | В | | 13 | IF 10
IF 10
IF 10
CV OR
< 20% | IS Y ANI
IS Y ANI
IS N, SI
RSD
(Y/N)
IS Y EN | D 11 IS
KIP TO | Y, CON
19, MSA
MSA | IS REC | UIRED I | F 11 IS
ED IF 1 | 1 IS N | | BE DON | B | | 13
14
15 | IF 10
IF 10
IF 10
CV OR
< 20%
IF 13
REANAL
(Y/N) | IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN YZED IS N EN | D 11 IS KIP TO TER A I | Y, CON
19, MSA
MSA | TINUE WA IS REQ
A IS NOT | UIRED I | F 11 IS
ED IF 1 | 1 IS N | H 15 | BE DON | B | | 13
14
15 | IF 10 IF 10 IF 10 IF 10 CV OR < 20% IF 13 REANAL (Y/N) IF 15 REANAL RSD <2 | IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y ENI YZED IS N ENI YSIS CV | D 11 IS KIP TO TER A I | Y, CON
19, MSA
MSA | TINUE WA IS REQ
A IS NOT | UITH 13
DUIRED I
REQUIR | F 11 IS
ED IF 1 | 1 IS N | H 15 | BE DON | B | | 13
14
15
16
17 | IF 10
IF 10
IF 10
IF 10
CV OR
< 20%
IF 13
REANAL
(Y/N)
IF 15
REANAL
RSD <2
(Y/N)
IF 17 | IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN' YZED IS N EN' YZES IS N EN' YZES IS Y EN' IS Y EN' | D 11 IS
KIP TO
TER A I | Y, CON
19, MSA
MSA
N 27 (E | IS REGALIS NOT | UITH 13
DUIRED I
REQUIR | F 11 IS
ED IF 1
N CONTI | 1 IS N | H 15 | BE DON | B | | 13
14
15
16
17 | IF 10 IF 10 IF 10 CV OR CV OR CV 20X IF 13 REANAL (Y/N) IF 15 REANAL (Y/N) IF 17 HSA (Y | IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN' YZED IS N EN' YXSIS CV OX IS Y EN' (N) | D 11 IS KIP TO TER A I | Y, CON
19, MSA
MSA
N 27 (E | FINUE WA IS REQAIS NOT | VITH 13 VUIRED I REQUIR THE STATE OF STA | F 11 IS ED IF 1 N CONTI | NUE VIT | H 15 | BE DON | В | | 13
14
15
16
17
18
19
20 | IF 10 IF 10 IF 10 CV OR CV OR CV 20X IF 13 REANAL (Y/N) IF 15 REANAL (Y/N) IF 17 HSA (Y | IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN' YZED IS N EN' YXED IS Y EN' /N) IS Y EN' /N) IS N, EI | D 11 IS KIP TO TER A I | Y, CON
19, MSA
MSA
N 27 (E | FINUE WA IS REQAIS NOT | UITH 13
DUIRED I
REQUIR
13 IS | F 11 IS ED IF 1 N CONTI | NUE VIT | H 15 | BE DON | B | | 13 14 15 16 17 | TF 10 IF 10 IF 10 CV OR < 20% IF 13 REANAL (Y/N) IF 15 REANAL (Y/N) IF 17 MSA (Y IF 19 CC > 0 (Y/N) | IS Y ANI IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN YZED IS N EN YSIS CV OX IS Y EN TN IS N, EI .995 | D 11 IS KIP TO TER A I | Y, CON
19, MSA
MSA
N 27 (E | TINUE WA IS RECA IS NOT IFEND); IFENDD); IFENDDD); IFENDDD); IFENDDD); IFENDDDD); IFENDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | TITH 13 UURED I REQUIR 13 13 15 15 15 15 17 15 17 19 1 N | F 11 IS ED IF 1 N CONTI | NUE VIT | H 15 H 17 T (END) | BE DON | B Y Y Y Y Y Y Y Y Y | | 13
14
15
16
17
18
19
20
21 | IF 10 IF 10 IF 10 IF 10 CV OR < 20% IF 13 REANAL (Y/N) IF 15 REANAL (Y/N) IF 17 MSA (Y IF 19 CC > 0 C(Y/N) IF 21 | IS Y ANI IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN' YZED IS N EN' YZED IS N EN' /N) IS Y EN' /N) IS N, EI .995 | D 11 IS KIP TO TER A I TER A I | Y, CON
19, MSA
MSA
N 27 (E | TINUE WA IS RECA IS NOT IFEND); IFENDD); IFENDDD); IFENDDD); IFENDDD); IFENDDDD); IFENDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | VITH 13 VUIRED I REQUIR THE STATE OF STA | F 11 IS ED IF 1 N CONTI | NUE VIT | H 15 H 17 T (END) | BE DON | B | | 13
14
15
16
17
18
19
20
21
22
23 | IF 10 IF 10 IF 10 CV OR < 20% IF 13 REANAL (Y/N) IF 15 REANAL RSD <2 (Y/N) IF 17 IF 19 CC > 0 (Y/N) IF 19 CC > 17 IF 19 21 IF 19 IF 21 | IS Y ANI IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN YZED IS N EN YZED IS Y EN (Y/N) IS N, EI (Y/N) | D 11 IS KIP TO TER A I TER A I NTER J TER A I | Y, CON
19, MSA
MSA
N 27 (E | TINUE WA IS RECAILS NOT IF END); IF END); IF END); IF | TITH 13 UUIRED I REQUIR 13 IS 13 IS 15 IS 17 IS 17 IF 19 I N F 21 IS | F 11 IS ED IF 1 N CONTI Y CONTI N ENTER S Y CON N CONT | NUE WIT | H 15 H 17 TH 21 TH 23 | BE DON | B
I
Y | | 13
14
15
16
17
18
19
20
21
22
23
24 | IF 10 IF 10 IF 10 IF 10 CV OR < 20% IF 13 REANAL (Y/N) IF 15 REANAL (Y/N) IF 17 HSA (Y IF 19 CC > 0 (Y/N) IF 21 RE HSA RE HSA | IS Y ANI IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN YZED IS N EN YZED IS N EN YSIS CV OZ IS Y EN (Y/N) IS N, EI (Y/N) IS Y EN CC | D 11 IS KIP TO TER A I TER A I NTER J TER A I | Y, CON
19, MSA
MSA
N 27 (E | TINUE WA IS RECAILS NOT IF END); IF END); IF END); IF | TITH 13 UURED I REQUIR 13 13 15 15 15 15 17 15 17 19 1 18 19 1 | F 11 IS ED IF 1 N CONTI Y CONTI N ENTER S Y CON N CONT | NUE WIT | H 15 H 17 TH 21 TH 23 | BE DON | Y | | 13
14
15
16
17
18
19
20
21
22
23
24
25 | IF 10 IF 10 IF 10 IF 10 CV OR < 20% IF 13 REANAL (Y/N) IF 15 REANAL RSD <2 (Y/N) IF 19 CC > 0 (Y/N) IF 19 CC > 0 (Y/N) IF 21 RE HSA IF 23 RE HSA IF 23 RE HSA IF 23 RE HSA IF 23 | IS Y ANI IS Y ANI IS Y ANI IS N, SI RSD (Y/N) IS Y EN YZED IS N EN YZED IS N EN (Y/N) IS N, EI (Y/N) IS N, EI (Y/N) IS N, EI (Y/N) IS N EN (Y/N) IS N EN (Y/N) IS N EN (Y/N) | D 11 IS KIP TO TER A I TER A I TER A I TER A I | Y, CON
19, MSA
MSA
N 27 (E
N 27 (E
N 27 (E
N 27 (E
N 27 (E | TINUE WA IS RECALL IS NOT INTEND; IF END); EN | TITH 13 UUIRED I REQUIR 13 IS 13 IS 15 IS 17 IS 17 IF 19 I N F 21 IS | F 11 IS ED IF 1 N CONTI Y CONTI S Y CON N CONT Y CONT | J IS N NUE WIT NUE WIT TINUE WIT INUE WI | H 15 H 17 TH 17 TH 21 TH 23 TH 25 | Y
Y | B Y Y Y Y Y Y Y Y Y | ## FURNACE AA CHECKLIST - 1. DUPLICATE INJECTION RESULTS: - A. Did any sample with a reported concentration greater than the CRDL have a duplicate injection XRSD or CV greater than ± 20%? (Y or N) - B. If 1A was Y, were the samples re-analyzed? ____ (Y or N) IF CRITERIA WERE OUT OF LIMITS FOR REPORTED DATA, EVALUATE THE DATA BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, XRSD OR CV AND FLAGS. - 2. ANALYTICAL SPIKE RESULTS: - Al. Did any sample have analytical spike (post digestion) recoveries less than 40 % 10 (Y or N) - A2. If Y, were the samples diluted and reanalyzed? _____ (Y or N) - A3. If Y, were the re-analysis analytical spike recoveries less than 40%? ______(Y or N) IF CRITERIA WERE OUT OF LIMITS FOR REPORTED DATA, EVALUATE THE DATA BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, PERCENT RECOVERY AND FLAGS. - ANALYTICAL SPIKE RESULTS CONTINUED: - B. Were there any samples with an analytical spike recovery of less than 85% or greater than 115% with the sample absorbance less than 50% of the spike absorbance? (Y or N) IF B WAS ANSWERED Y FOR ANY REPORTED DATA, EVALUATE THE DATA BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, SPIKE RECOVERY AND FLAGS. - C1. Were there any samples with analytical spike recovery less than 85% or greater than 115% whose sample absorbance was greater than 50% of the spike absorbance? (Y or N) - C2. If Y, was the Method of Standard Addition used for quantification? IF C2 WAS ANSWERED N, EVALUATE THE DATA BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, SPIKE RECOVERY AND FLAGS. - 3. METHOD OF STANDARD ADDITION: - A. Was the Method of Standard Addition used for the quantification of any sample? (Y of N) - B. If Y, were all of the correlation coefficients greater than 0.995? (Y or N) IF B WAS ANSWERED N, LIST THE DEFICIENCIES AND EVALUATE BELOW. INCLUDE ELEMENT, SAMPLE NUMBER, CORRELATION COEFFICIENT AND FLAG. sample MFAP 53 was run tuice with the Method of Standard addition. Both times the correlation coefficient was less than 0.955. Cenalyte was flagged (J).